当前位置:首页 > > 正文

油田注水开发技术是什么?

  • 油田注水开发技术是什么?
  • 2024-03-28 22:25:48
  • 4768

简介在采油过程中,仅利用地层天然能量进行采油,称为“一次采油”。一次采油也被称为“能量衰竭法采油”,采收率一般只能达到15%左右,大部分油气仍残留在油层中。为保持和提高地层能量,提高地层中油气采收率,人们...

在采油过程中,油田仅利用地层天然能量进行采油,注水称为“一次采油”。技术一次采油也被称为“能量衰竭法采油”,油田采收率一般只能达到15%左右,注水大部分油气仍残留在油层中。技术为保持和提高地层能量,油田提高地层中油气采收率,注水人们采用油田注水开发技术。技术

油田注水开发技术是什么?

向油层注水,油田保持或提高地层能量,注水提高油气采收率的技术采油方法,早在20世纪20年代美国就已工业化应用。油田苏联于1946年第一次在杜依玛兹油田采用早期注水、注水保持油层压力的技术开发方法。在这期间注水开发的油田越来越多。1936年美国采用注水开发的区块只有846个,到1970年就发展到9000个以上。我国最早大量注水的油田是克拉玛依油田,现各主要油田都采用了注水开发方式。因此,注水已成为世界范围内油田开发的主要手段。

一、油田注水时间的选择

(一)不同时间注水油田开发的特点

不同类型的油田,在油田开发的不同阶段注水,对油田开发过程的影响是不同的,其开发结果也有较大的差异。

1.早期注水

早期注水的特点是在地层压力还没有降到饱和压力之前就及时进行注水,使地层压力始终保持在饱和压力以上。由于地层压力高于饱和压力,油层内不脱气,原油性质较好。注水以后,随着含水饱和度增加,油层内只是油、水两相流动,其渗流特征可由油水两相渗透率曲线所反映。

早期注水可以使油层压力始终保持在饱和压力以上,油井有较高的产能,有利于保持较长的自喷开采期。由于生产压差调整余地大,有利于保持较高的采油速度和实现较长的稳产期。但这种注水方式使油田投产初期注水工程投资较大,投资回收期较长。所以,早期注水方式不是对所有油田都是经济合理的,尤其对原始地层压力较高而饱和压力较低的油田更是如此。

2.晚期注水

油田开发初期依靠天然能量开采,在没有能量补给的情况下,地层压力逐渐降到饱和压力以下,原油中的溶解气析出,油藏驱动方式转为溶解气驱,导致地下原油黏度增加,采油指数下降,产油量下降,气油比上升。如我国某油田,在地层压力降到饱和压力以下后,气油比由77m3/t上升到157m3/t,平均单井日产油由10t左右下降到2t左右。

在溶解气驱之后注水,称晚期注水,在美国称“二次采油”。注水后,地层压力回升,但一般只是在低水平上保持稳定。由于大量溶解气已跑掉,在压力恢复后,也只有少量游离气重新溶解到原油中,溶解气油比不可能恢复到原始值。因此,注水以后,采油指数不会有大的提高。由于油层中残留有残余气或游离气,注水后可能形成油、水两相或油、气、水三相流动,渗流过程变得更加复杂。这种方式的油田产量不可能保持稳产,自喷开采期短,对原油黏度和含蜡量较高的油田,还将由于脱气使原油具有结构力学性质,渗流条件更加恶化。

晚期注水方式初期生产投资少,原油成本低。原油性质较好、面积不大且天然能量比较充足的中、小油田可以考虑采用。

3.中期注水

中期注水介于上述两种方式之间,即投产初期依靠天然能量开采,当地层压力下降到低于饱和压力后,在气油比上升至最大值之前注水。此时油层中将由油、气两相流动变为油、气、水三相流动。随着注水恢复压力,可以有两种情形:

一种情形是地层压力恢复到一定程度,但仍然低于饱和压力。在地层压力稳定条件下,形成水驱混气油驱动方式。据室内模拟和国外文献介绍,如果地层压力低于饱和压力15%以内,此时从原油中析出的气体尚未形成连续相,这部分气体有一定驱油的作用,并由于油—气间的界面张力远比油—水界面、油—岩石界面的张力小,因而部分气泡位于油膜和岩石颗粒表面之间。这对亲油岩石来说,可破坏岩石颗粒表面的连续油膜,有助于提高最终采收率。

另一种情形就是通过注水逐步将地层压力恢复到饱和压力以上。此时,脱出的游离气可以重新溶解到原油中,但天然气组分的相态变化是不可逆过程。当提高压力时,脱出的游离气重新完全溶解所需的压力为溶解压力。显然,溶解压力大于饱和压力。此外,在利用天然能量开采阶段,部分溶解气逸出。因此,即使地层压力恢复到饱和压力以上,溶解气油比和原油性质都不可能恢复到初始情况,产能也将低于初始值。在地层压力高于饱和压力条件下,如将井底流压降至饱和压力以下,尽管采油指数较低,但由于采油井的生产压差大幅度提高,仍可使油井获得较高的产量和较长的稳产期。

中期注水的特点是初期投资少,经济效益好,也可能保持较长稳产期,并不影响最终采收率。地饱压差较大、天然能量相对较大的油田比较适用于中期注水。

(二)选择注水时机应考虑的因素

1.油田天然能量的大小

要确定油田合理的注水时间,就要研究油田天然能量的大小,研究这些能量在开发过程中可能起的作用。总的原则是:在满足油田开发要求的前提下,尽量利用油田的天然能量,尽可能减少人工能量的补充。如有的油田边水很活跃,边水驱动能满足油田开发的要求,就没有必要采用人工注水的方法开发;有的油田原始地层压力与饱和压力相差很大,有较大的弹性能量,也就没有必要采用早期注水。

2.油田的大小和对油田产量的要求

不同油田由于自然条件和所处位置的不同,对油田开发方针和产量也是不同的。小油田,由于储量少、产量不高,一般要求高速开采,不一定追求稳产期,因此也就没有必要强调早期注水。大油田,对国家原油产量的增长起着很大的作用,对国民经济及其他部门的布局和发展有着很大的影响,因此要求大油田投入开发后,产油量逐步稳定上升,在油田达到最高产量后,还要尽可能地保持较长时间的稳产,不允许油田产量出现较大的波动。要确保这个目标的实现,一般要求进行早期注水。如前苏联第二巴库油田大部分是采用早期注水开发。20世纪70年代以后投入开发的西西伯利亚油区的一些大油田也是采用早期注水开发的。如萨马特洛尔油田,1969年4月投入开发,同年10月就开始注水,当年采油140×104t,到1975年产量达到8700×104t,1976年采油速度就达到2%,1980年产量为1.52×108t,地层压力始终保持在原始地层压力附近。

3.油田的开采特点和开采方式

自喷开采的油田,就要求注水时间相对早一些,压力保持的水平相对高一些。原油黏度高、油层非均质性严重、自喷很困难、只能采用机械方式采油的油田,地层压力就没有必要保持在原始地层压力附近,不一定采用早期注水开发。原始油层压力与静水柱压力之比高于1.3以上的油田,即使自喷开采,保持压力的界限也可以比原始压力低,因此注水时间也可以推迟。

总之,注水时间的选择是一个比较复杂的问题。我们既要考虑到油田开发初期的效果,又要考虑到油田中后期的效果,必须在开发方案中进行全面的技术论证,在不影响油田开发效果和完成国家任务的前提下,适当推迟注水时间,可以减少初期投资,缩短投资回收期,有利于扩大再生产,取得较好的经济效益。

二、油田注水方式

油田注水方式是指注水井在油田上所处的部位和注水井与采油井间的排列关系。

采用人工注水开发的油田,油井之间、注水井之间、油井与注水井之间都存在着严重的相互干扰。因此,我们必须深入研究油层性质和构造条件,确定合理的注采井网,进行合理的配产配注。这是油田注水开发中最突出、最关键的一个问题。

油田注水方式可分为边缘注水、切割注水、面积注水和点状注水四种,油田应结合地质条件、流动特征以及开发的要求选择最佳的注水方式。

(一)边缘注水

边缘注水的条件是:油田面积不大,构造比较完整,油层稳定,边部和内部连通性好,油层流动系数(有效渗透率×有效厚度/原油黏度)较高。特别是钻注水井的边缘地区要有较高的吸水能力,能保证压力的有效传递,使油田内部能收到良好的注水效果。边缘注水根据油水过渡带的油层情况又可分为缘外注水、缘上注水和缘内注水三种。

1.缘外注水

缘外注水又称边外注水。这种注水方式要求含水区内渗透率较高,注水井一般与等高线平行,分布在外油水边界以外,如图6-8所示。它的优点是相当于将供给边线移近到油藏开发区,可保持或提高新供给边线的压力。

世界上用这种注水方式开发比较成功的油田,如前苏联的巴夫雷油田,面积为80km2左右,平均有效渗透率为0.6μm2,油层比较均匀而稳定,边水活跃。采用边外注水后,油层平均压力稳定在13.73~15.70MPa之间。在注水后的5年内,石油日产量基本稳定,年采油速度为可采储量的6%左右。我国老君庙油田,面积较小,并有边水存在,在开发初期,L油层和M油层均采用缘外注水方式。

2.缘上注水

当油田在油水外缘以外的区域渗透性差时,不宜缘外注水,而将注水井部署在油水外缘上或在油藏以内距油水外缘不远的地方,即缘上注水,如图6-9所示。

图6-8 缘外注水

图6-9 缘上注水

3.缘内注水

如果油层渗透率在油水过渡带很差,在过渡带不适宜注水,而应将注水井部署在含油内缘以内,以保持油井充分见效和减少注水的外逸量,如图6-10所示。

边缘注水方式适用于边水比较活跃的中心油田。这种注水方式的优越性是油水界面比较明显,逐步由外向油藏内部均匀推进,故比较容易控制,无水采收率或低含水采收率较高。与其他类型的油田相比,其最终采收率往往要高出许多,国内外有些油田已经证实了这一点。若在适当的地方辅以点状注水,则开发效果更佳。由于油井受注水井有效影响最多只有三排,因此若是较大的油田采用边缘注水,往往只是构造边部几排井受益,而处于构造顶部的井(这些井一般都具有石油性质好、油层厚、渗透性好等高产条件),就得不到注水能量的补充。若控制这些油井生产,势必降低采油速度,延长开发时间。若让其投产,则由于能量不够,易形成低压带变为弹性驱动或溶解气驱消耗方式采油,以致后来造成停喷。

因此,仅仅依靠边缘注水是不行的,这时应该用边缘注水加顶部点状注水或采用切割注水方式,如图6-11所示。

图6-10 缘内注水

图6-11 外缘注水加切割注水

(二)切割注水

对于面积大、储量丰富、油层性质稳定的油田,一般采用切割注水方式。这种注水方式利用注水井排将油藏分成较小的单元切割区。可以根据油藏不同类型形态、物性、开发要求因地制宜地采用横切、纵切或环状切割等不同形式,如图6-12所示。

图6-12 切割注水

边内切割注水方式的采用条件是:油层分布面积大,且有一定的延伸长度,注水井排上可以形成比较完整的水线,保证在切割区内注水井与采油井之间要有较好的连通性,油层具有一定的流动系数,保证在一定的切割区和一定的井排距内,注水效果能比较好地传递到生产井排,以便确保在开发过程中达到所要求的采油速度。

国外一些大油田,如前苏联的罗马什金油田,采取了切割注水方式,特别是在中央三个较大的切割区内,增加了切割水线以后,注水效果较好,大部分油井保持正常自喷。美国的克列—斯耐德油田,面积约为200km2,初期依靠弹性开采后转为溶解气驱方式,为了提高开采速度及采收率,对该油田研究了四种不同的注水方式,后来用了切割注水方式,则成为水压驱动,恢复了油层压力,大部分油井又恢复了自喷能力。我国20世纪50年代的克拉玛依油田一区、五区、六区等区块也采取了切割注水方式。

(三)面积注水

面积注水实质上是把油层分割成许多更小的单元,即一口注水井控制其中之一,并同时影响邻近的几口油井,而每口油井又同时受邻近的几口注水井不同方向上的注水影响。显然这种注水方式有较高的采油速度,生产井容易受到注水井的影响。不同的面积注水方式及井网参数见图6-13和表6-1。

表6-1 不同面积井网的井网参数

井网注水井与生产井比例钻成井网要求七点法1:2等边三角形歪七点法1:2正方形五点法1:1正方形四点法2:1等边三角形九点法1:3正方形反九点法3:1正方形

图6-13 面积注水

什么样的油田,选用什么样的面积注水,并无固定的格式。一般说来,油层连通性不好,而又要加速开采,这时注水井就应该多,可采用四点法或反九点法;反之则采用七点法井网开采。在油田开发初期,注水井应少些,到了晚期,注水井数就应适当增多。面积注水方式适用的条件如下:

(1)油层分布不规则,延伸性差,多呈透镜状分布,用切割注水不能控制注入水,不能逐排地影响生产井。

(2)油层渗透性差,流动系数低,切割注水时注水推进的阻力大,采油速度低。

(3)油田面积大,构造不够完整,断层分布复杂。

(4)适用于油田后期的强化开采以提高采收率。

(5)油层具备切割注水或其他注水方式,但要求达到更高的采油速度时也可用面积注水方式。

与切割注水相比,面积注水方式对油层分布适应性要广些,采油速度要高些,但切割注水方式调整的灵活性要大些。

(四)点状注水

点状注水是指注水井零星地分布在开发区内,常作为其他注水方式的一种补充形式。

水压膨胀裂石的缺点

在工作面回采巷道形成后,应进行工作面水文地质条件探查,查明工作面底板灰岩含水层富水性,探查导水裂隙带的存在及分布情况,煤层底板隔水层厚度,L1-3灰岩或奥陶系灰岩水导升高度等,从而为工作面防治水提供依据。

工作面水文地质条件探查采用钻探和井下音频电透视、井下直流电法等物探方法进行。工作程序是,首先进行井下音频电透视或井下直流电法物探,确定工作面导水断层或导水裂隙带的存在及分布,L5-6灰岩含水层的富水性情况;利用钻探对物探方法确定的薄弱带、富水段进行验证,同时确定煤层底板隔水层厚度、L1-3灰岩和奥陶系灰岩水导升高度。

(一)井下物探手段

1.井下音频电透视

音频电透视方法是在上回风巷、下顺槽施工,探测工作面内部煤层底板下0~50m层段含水层中富水性异常的分布范围、走向及其富水性的相对强弱等情况,探查隔水层裂隙发育带及其分布规律,为综合分析煤层底板隔水层性能提供依据。

2.直流电法探测

采用矿井高分辨电测深技术在工作面的上回风巷、下顺槽施工,探测底板下80m深度范围内含水性异常的分布位置与深度,分析含水层的富水特征。

上述两种井下探测手段是矿井开采中较为常用的方法,且探测方法相对简单。

首先在西翼采区22121工作面和东翼采区21091工作面进行井下音频电透视和直流电法探测,研究超化煤矿特定物性条件下不同物探方法的适用性及其解释规律,并推广应用于其他工作面。

(二)煤层底板隔水层隔水性能的探查及评价

深部煤层开采将受到下伏奥陶系灰岩承压含水层的底板突水威胁,因此煤层底板隔水层的隔水性能的探查及评价是带压开采研究的主要内容之一。主要包括以下内容:

1)奥陶系灰岩水原始导升高度和富水性的探查与研究。

2)煤底板原位地应力测试。

3)煤层底板薄层灰岩水入侵动态监测及水情预报。

(三)二1煤下伏灰岩水的原始导升高度和富水性探测

据统计,华北型煤田在灰岩含水层顶部富集地段,煤层底板岩层底部都存在着不同程度的导升现象。灰岩水沿煤层底板隔水层裂隙的侵入,既降低底板隔水层的有效厚度,又在裂隙中积蓄了致裂的能量,产生裂隙尖端应力异常,在矿压作用下导致裂隙扩展。因此,探查导升高度对突水评价具有重要意义。

探测导升高度较为有效的方法就是电法,另外,该法还可以探测灰岩的深度。这项工作开展之前应由水文地质技术人员作出设计,探测结果,也应由水文地质技术人员参与确定导升高度和煤层隔水层的有效厚度,并对工作面的水文地质条件进行简单的评价。

电法探测一般是沿工作面的上下巷布置,具体采用直流电法还是音频电透视法,应由水文地质技术人员确定。由于超化煤矿西翼采区突水系数较大,理论上对于每个工作面都应进行该项工作。

(四)底板原位地应力普查与监测

原位地应力的测量对底板突水评价非常重要,底板岩体的应力大小是底板破裂的主要原因,是评价底板阻水性能的重要数据。应力主要的构成因素有:岩性,构造地应力(包括新构造应力和残余构造地应力),水压派生地应力和采矿派生地应力。

地应力的测量方法主要有水压致裂法、套芯法、套筒法和弹性波法等,其中水压致裂法和套芯法工艺复杂,井下实施困难,弹性波法受岩体物理性质参数影响很大,精度较差。这样,套筒法就成了矿井原位地应力测量行之有效的方法。

原位地应力测量分采前未受扰动底板地应力测量和开采过程中扰动地应力测量两个阶段,采前测到的地应力为静态地应力(初始应力),在反演求参和正演模拟中作为初应力应用。采动过程中测得的地应力为动态地应力,作反演求参的拟合对象和判别采矿底板破坏深度的依据,根据岩石力学参数和初始地应力就可以用电算法计算地应力场和底板破坏情况。这种方法的优点是可直接得到岩体的强度和破坏深度,缺点是没有考虑水压的作用,测点和测试时间短,对水的动态无法监测。

原位地应力测量将分两个阶段进行,第一阶段为原位地应力普查阶段,第二阶段为地应力监测阶段,各阶段探测的意义和工程布置如下:

原位地应力普查:本规划所涉及的块段地质构造相对简单,局部有断层发育。通过原位地应力普查,了解采前底板的原位地应力场,为底板阻水性评价提供依据。

拟分别安排在西翼采区的22101和23051工作面内进行原位地应力普查。测试工作在两个钻孔中进行,总进尺约70m。测试将分采前和采动过程中两次进行,第一次测试应在距切眼60m以外的钻孔内完成,第二次测试应在距工作面10~30m范围内的钻孔内进行。每次测试应在同一工作班内完成,以减少工作面推进对应力产生的影响。每个岩性分层中都必须布置测点,对于较厚的岩层,每3m应设置一个测点。孔深6~15m范围内,每1m布置一个测点,以较多的观测数据来判定采矿对底板的破坏深度。每次测试的数据处理应在现场完成,以便发现问题及时补救。

具体的操作方法和施工要求将另行设计。

(五)底板突水条件监测预警

1)监测目的:通过对薄层灰岩岩溶水和底板地应力的动态变化监测,预测底板水情,确定底板岩体力学参数、导升裂隙发育高度和采动底板破坏深度,为采煤工作面的水文地质评价提供依据。

2)监测内容:水压,水温,应力,应变。

3)监测方法:在采矿过程中,由于煤层底板的应力场和渗流场均会发生变化,承压水的入侵高度也将向上发展,产生递进导升现象,以致造成底板突水。因此,底板突水伴有岩体应力变化,水压、水温变化,水量增加等一系列征兆。这些征兆就是突水预测预报的依据。通过传感器可把这些征兆转变成电磁信号,然后再将电磁信号转换成地质信息。根据这些信息就可了解水情的变化,实现动态监测。

突水前兆监测系统由主控台(总站)、数据采集器(分站)和传感器组成。总站设在地面调度室或地测科,分站设在工作面的风巷或机巷内,传感器置于钻孔内。

4)预测方法:将原位测试得到的静态地应力作为初应力,监测的地应力增量作拟合的目标值,反求岩体力学参数和渗透系数。再用这些参数正演模拟开采过程,实现煤层底板突水条件的预警,并将正演结果以仿真图形的形式输出,实现可视化监测。

根据以往的力学计算,对于超化煤矿底板的厚度,监测范围宜在采前和采后各60m的区段内进行。

底板突水检测技术曾在淮北矿务局、皖北矿务局、澄合矿务局、韩城矿务局、肥城矿务局和临城矿务局应用过,取得了很好的效果。其中,在韩城矿务局马沟渠煤矿成功地预报了一次突水;淮北矿务局杨庄煤矿的检测避免了工作面疏干降压或底板加固工程。

该方法的优点是:①具有可视化功能。地面检测中心(总站)可以用图形的形式在屏幕上显示出监测到的各种曲线和底板剖面应力场、渗流场动态等值线和底板的变形与破坏状态。②具有预测功能。以原位测试得到的原始应力为初应力,利用有限元方法模拟开采,并计算出应力场、位移场和渗流场的动态值。以实现40~60m的超前预测,并以图形显示。③具有实时性特点。各种监测的物理量都可以在现场及时处理并显示出结果。

缺点是:无法测到原位地应力,电算时初始应力值需借用原位地应力测试值或用理论值。

本项工作与底板原位地应力普查同步进行可相互补充,预测效果更佳,拟先在西翼采区的22101和东翼采区的23051工作面内进行,最终的工作面将根据生产情况由生产单位和科研单位确定。测试工作面需要两个钻孔,总进尺约70m,监测位置将根据工作面的情况而定。监测方法可推广应用于后续工作面,监测之前应进行设计,详细方法和措施将在设计中说明。

(六)矿井防突水保障信息系统

煤矿防治水是一项经常性、综合性的系统工程,需要对多种信息进行及时准确的分析、计算,绘制所需图、表,仅靠人力通过传统的数据管理方法,不能满足矿井防治水快速、及时、准确的要求。应尽快建立和完善矿井防突水保障信息系统,包括地测信息系统(已建立)、煤层底板阻水性能综合评价体系、水化学快速判别系统。

1.煤层底板阻水性能综合评价体系

煤层底板隔水层的阻水性能是决定防治水策略的重要因素,是带压开采的基础,建立煤层底板阻水性能综合评价体系,才能正确评价隔水层的阻水性能。隔水层的阻水性能是指在煤层底板承压含水层水压和采动压力作用下阻止承压水涌出的能力,与隔水层的岩性、厚度、组合情况以及空隙特征有关。

煤层底板阻水性能综合评价体系将通过煤层底板强度测试、现场压水或注水试验、室内模拟等方法建立。

2.水化学快速判别系统

不同的水源具有不同的水化学成分,因此根据水化学成分的不同可以判断水的来源。矿井突水情况下,快速判断突水水源,对于正确制定抢险救灾方案,恢复矿井生产,减少突水损失都是至关重要的。水化学快速判别系统可根据矿井涌水的水化学成分,简洁、高效地确定突水水源,其成本之低也是其他方法无法比拟的。因此,它是矿井防治水的重要手段。

必须假定铅垂方向。

水压致裂法的缺点是只宜用铅垂孔进行测量,且必须假定铅垂方向为一个主应力方向,不适合于地形变化大的在浅部。

水压致裂法的缺点是只宜用铅垂孔进行测量,且必须假定铅垂方向为一个主应力方向,不适合于地形变化大的在浅部。